Stimulation of Somatostatin Expression in Developing Ganglion Neurons by Cells of the Choroid Layer Ciliary
نویسندگان
چکیده
An important component of neuronal development is the matching of neurotransmitter expression with the appropriate target cell. We have examined how peptide transmitter expression is controlled in a simple model system, the avian ciliary ganglion (CG). This parasympathetic ganglion contains 2 distinct types of neurons: choroid neurons, which project to vasculature in the eye’s choroid layer and use somatostatin as a co-transmitter with ACh, and ciliary neurons, which innervate the ciliary body and iris and use ACh but no known peptide co-transmitter. We have found that the earliest developmental stage in which neurons with somatostatinlike immunoreactivity (SOM-IR) are consistently found in viva is stage 30 (embryonic day 6.5), a time shortly after the extension of neurites to targets in the eye’s choroid layer. In cell culture, CG neurons expressed SOM-IR in coculture with choroid cells, but not when cultured with striated muscle myotubes or with ganglion non-neuronal cells. No significant differences in neuronal survival or in ChAT activity were observed under these different co-culture conditions, which suggests that somatostatin expression is independently regulated. The stimulation of somatostatin expression was also specific in that other neuropeptides commonly found in autonomic neurons [neuropeptide Y (NPY), substance P (SP), vasoactive intestinal polypeptide (VIP)] were not induced in the presence of choroid cells. The ability to stimulate SOM-IR was not contact dependent because a macromolecule of 2 10 kDa in choroid-conditioned medium (ChCM) was found to stimulate somatostatin expression in a dosage-dependent fashion. The somatostatinstimulating activity induced SOM-IR in more than 90% of CG neurons, as well as in retrogradely labeled ciliary neurons, which would not normally express SOM-IR. Thus, the expression of somatostatin in cultured CG neurons is regulated by a macromolecule produced by cells in the choroid layer, a target normally innervated in viva by CG neurons expressing somatostatin.
منابع مشابه
Activin A and follistatin expression in developing targets of ciliary ganglion neurons suggests a role in regulating neurotransmitter phenotype
The avian ciliary ganglion contains choroid neurons that innervate choroid vasculature and express somatostatin as well as ciliary neurons that innervate iris/ciliary body but do not express somatostatin. We have previously shown in culture that activin A induces somatostatin immunoreactivity in both neuron populations. We now show in vivo that both targets contain activin A; however, choroid e...
متن کاملActivin A and follistatin influence expression of somatostatin in the ciliary ganglion in vivo.
An important developmental question concerns whether neurotransmitter phenotype is an inherent property of neurons or is influenced by target tissues. This issue can be addressed in the avian ciliary ganglion (CG) which contains two cholinergic populations, ciliary and choroid neurons, that differentially express the peptide cotransmitter, somatostatin. The present study tests the hypothesis th...
متن کاملBK-Type K(Ca) channels in two parasympathetic cell types: differences in kinetic properties and developmental expression.
The intrinsic electrical properties of identified choroid and ciliary neurons of the chick ciliary ganglion were examined by patch-clamp recording methods. These neurons are derived from a common pool of mesencephalic neural crest precursor cells but innervate different target tissues and have markedly different action potential waveforms and intrinsic patterns of repetitive spike discharge. Th...
متن کاملDevelopmental cell death in vivo: rescue of neurons independently of changes at target tissues.
Programmed cell death is a prominent feature of neural development that is regulated by a variety of cell-cell interactions. We used the avian ciliary ganglion to dissect the relative contributions of target tissues vs. ganglionic inputs in regulating cell death. The two populations of the ciliary ganglion innervate different targets: choroid neurons innervate vasculature, whereas ciliary neuro...
متن کاملChoroid tissue supports the survival of ciliary ganglion neurons in vitro.
It is well established that during in vivo development the neurons of the avian ciliary ganglion are dependent for their survival on structures in the eye. Separate neuron populations innervate intraocular smooth and striated muscle targets. All ciliary neurons survive when cocultured with striated muscle. We demonstrate that when ciliary ganglion neurons are plated on explants of the choroid c...
متن کامل